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Summary

We are going to design and implement a system that performs forecast reconciliation
for large-scale, hierarchical time-series datasets. The system features various forms
of parallelization (shared-memory, message-passing, SIMD) of multiple matrix-
based reconciliation methods (top-down, bottom-up, middle-out, OLS and WLS)
on single-node, multi-core and multi-node Intel CPU platforms using LAPACK,
OpenMP, and MPI. It is suitable for heavy workloads with overall tight memory
limit and raw forecasts co-located with each processor core, and we plan to perform
an in-depth study on the performance characteristics, especially memory constraints
and communication profile, of our system compared to existing methods (naive
matrix-based solution, Nixtla HierarchicalForecast).

1 Project Website

http://hts.ml.works

2 Background

Time-series forecasting is a very popular field in statistical and machine learning and has many
applications in financial markets (predicting stocks), IoT (predicting sensors), geosciences (predict-
ing earthquakes), and so on. Time-series is usually represented as a list of values y1 · · · yk with
timestamps t1 · · · tk associated with each value, and the task of forecasting could be defined as
"extending" the values to certain time stamps tk+1 · · · tk+l into the future yk+1 · · · yk+l [Hyndman
and Athanasopoulos, 2021].

Oftentimes, the time-series we are forecasting can be organized by certain characteristics of interest,
which can naturally be aggregated into different levels of a hierarchy. For example, if we are
forecasting Australia’s domestic visitors per day [Panagiotelis et al., 2021], we would be interested
in city-level, state-level, or nation-level forecasts. Notably, these forecasts have constraints placed
on some of them with respect to the hierarchy; e.g., a state’s forecast is the sum of all of the cities’
forecasts. Thus, a natural question would be:

How can we effectively leverage the structural information in the hierarchy to make forecasts on all
levels more accurate in a more efficient manner?

In most settings, the time-series forecasting algorithm is oblivious of this hierarchy, hence we focus
on a reconciliation-oriented approach, where forecasts are individually produced for each entity Ŷv

(for node v in the directed graph of hierarchy G = {V,E}), and we need to find a way to "reconcile"
each forecast to produce Y v such that they conform to the constraints imposed by the hierarchy
(such as parent equalling to sum of children) and more desirably, achieves a lower error metric L
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across all levels Σv∈V L(Yv, Y v). The set of updated forecasts Y v is often called coherent forecasts.
This approach also fits our intuition because e.g. 1: if our model independently predicts tourism on
city level and on state level, it is very unlikely that the city-level forecast could sum to the state-one
naively; 2: there are patterns within the state-level forecast than can help improve city-level forecast,
and vice versa.

We don’t have to forecast all nodes v to be able to successfully reconcile and produce forecasts.
In the system we are proposing, we plan to implement five methods, each of which have different
requirements on nodes to forecast to produce a coherent forecast:

1. Bottom-up [Hyndman and Athanasopoulos, 2021]: produce forecast for all leaves, then
gradually aggregating up to root (via summing or other methods).

2. Top-down [Hyndman and Athanasopoulos, 2021]: produce forecast for root only, then
specify, at each level, how a parent forecast breaks down to its children. Then execute the
gradual breakdown as we go down the levels.

3. Middle-out [Hyndman and Athanasopoulos, 2021]: pick a level that is not the leaves nor the
root, generate forecasts, then produce bottom-up for all levels above and top-down for all
levels below.

4. OLS [Hyndman et al., 2011] (Ordinary Least Square): produce forecast for all nodes,
then multiply by reconciliation matrix G = (STS)−1ST , where S is the summing matrix
(explained below).

5. WLS [Athanasopoulos et al., 2017] (Weighted Least Square): produce forecast for all nodes,
then multiply by reconciliation matrix G = (STWS)−1STW for some diagonal matrix W ,
where S is the summing matrix (explained below).

Before discussing the parallelization of forecast reconciliation, it’s useful to remark that forecasts on
each node are independent, and therefore are easily parallelizable. Thus, a usage pattern we often
observe in production is each core ci producing a subset of forecast:

Mci ∈ Rlci×k =


Ŷv1

Ŷv2
· · ·
Ŷvlci

 (1)

represented as a matrix of dimension (number of forecasts the core is responsible for) times (time
horizon). The matrices of each node will reside on memory close to the core in a NUMA (Non-
uniform memory access) architecture, and, with individual forecasts within a hierarchy scattered
across many cores, time for a particular process to access a particular node’s forecast is also highly
non-uniform with respect to the interconnect topology. We will explain why this setting is important
in the next section, but for now, we assume that the matrices on each process is collected and vertically
stacked into a single matrix representing all forecasts, as shown in the right hand side of Figure 1 in
the next paragraph.

In addition to naively reconciling forecast node-by-node along the graph hierarchy in a sequential way,
there are a few works on a single-process parallelization technique inspired by matrix algebra. The
core intuition of the existing approach is that if we allow repetitive computation, aggregation of each
node in the hierarchy can be thought of as independent computations Hyndman et al. [2011]. This
allows a neat matrix-multiplication-based interpretation of the reconciliation problem, reformulated
as a matrix multiplication by G (the reconciliation matrix) to map partial forecasts from nodes W to
base level forecasts, then summing up to each node via S (the summing matrix) to obtain the full
forecast of nodes in V :  Y v0

· · ·
Y v|V |−1


vi∈V

= SG

Ŷw0

· · ·
Ŷwk


wi∈W⊆V

(2)

Figure 1: Matrix-based, single-process forecast reconciliation
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Figure 2: Sample Hierarchy from [Hyndman and Athanasopoulos, 2021].

This can be seen as the "pseudo-code" of our baseline algorithm. For example, given the following
hierarchy in Figure 2 in [Hyndman and Athanasopoulos, 2021], a bottom-up approach would have a
reconciliation matrix

G =


0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

 (3)

and a summing matrix S bearing a relationship like

Y totalt
Y At

Y Bt

Y AAt

Y ABt

Y ACt

Y BAt

Y BBt


=



1 1 1 1 1
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ŶAAt

ŶABt

ŶACt

ŶBAt

ŶBBt

 (4)

The process of matrix multiplication is then sped up using BLAS (Basic Linear Algebra Subprograms)
libraries efficiently leveraging SIMD and threaded-parallelism over the naive sequential solution.
Commercial solutions like Nixtla HierarchicalForecast [Olivares et al., 2022] leverages this property
as well.

3 The Challenge

On the first look, the matrix-based solution in a single process seems to be efficient enough and
embarrassingly parallel. We instead focus on the case where the workload is scaling with memory
constraints and the forecasts start off in different memory locations with non-uniform access cost, as
hinted in the previous section.

3.1 Constraints

Real-world hierarchical time-series forecast datasets are large and unsuitable for the naive matrix-
based parallelization technique. For example, the Web Traffic Time Series Forecasting [Kaggle, b]
contains 145,063 time-series for 551 time-stamps across multiple hierarchies (e.g. locale, access,
agent), which places a lower bound of 1450632 × 4 ≈ 84.17 gigabytes to store the summing and
reconciliation matrices, not to mention the time it takes to perform the matrix multiplication. The
difficulty therefore lies in how to efficiently design an algorithm that has less memory footprint while
efficiently parallelizing the reconciliation.

Another challenge is communication. Under our setting, the forecasts before reconciliation is spread
across many processes on cores that are far away from each other. Naively sending all forecasts to one
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process to centrally process them would be one solution, but it would induce a large communication
overhead than we’d like. Devising an efficient method to distribute the computation across different
processes while minimizing communication is another major aspect of the challenge.

Finally, forecast reconciliation are performed to either produce forecasts that was not made in the first
place (e.g. bottom-up), or improve existing forecasts with information from other nodes along the
hierarchy (e.g. OLS). For the latter scenario, there is a case to be made on performing intra-process
reconciliation, therefore eliminating the need for extra communication. However, an important metric
in machine learning is the error metric of the algorithm in addition to the performance, and the
proposed approach could harm the effectiveness of the reconciliation method in general. Elucidating
the tradeoff space between latency and metric performance in forecast reconciliation is another major
constraints in the design of the system, where we may find certain optimizations infeasible as it
diminishes the algorithmic significance of our process.

3.2 Workload

There’s more to expand on the data dependencies and memory access characteristics of our system,
both of which ties back to the graph structure of the hierarchy. All processes require a copy of
the hierarchy itself to be aware of where communication takes place. Based on communication
and computation intensity, we need to also devise non-trivial strategies for splitting up work into
chunks owned by each process, even when assuming that producing the forecast for each is uniform.
For bottom-up, top-down and middle-out approaches, subsequent levels has a choice of waiting on
previous levels to finish computing, or choose to independently perform aggregation. The different
choices here could result in divergent execution. Locality also exists in this place based on where
forecasts are originally: if all forecasts of a certain level exists on a process in the first place, we could
eliminate communication altogether in this round. This intricate interplay between graph topology
and communication-to-computation ratio also presents a challenge in optimizing our system across
many different real-world datasets. We list out three examples, where strategies that minimizes
workload imbalance could look very different:

• Wikipedia [Kaggle, b]: few levels, each node containing many children, essentially a “flat
hierarchy”

• Suggested Upper Merged Ontology (SUMO) [Cua et al., 2010]: many levels which implies
more aggregations, a "tall hierarchy”

• Retail Goods in Walmart [Kaggle, a]: uneven, "ragged" hierarchy with each level having
different compute intensity.

For OLS and WLS reconciliation, computing the G matrix for large datasets in a message-passing
setting could be challenging or even unfeasible due to memory constraints. Splitting the works
efficiently across many processes in conjunction with BLAS functionalities, and only preserving in-
formation required for timeseries of each process presents many challenges to system and algorithmic
design.

4 Resources

There’s a wide range of literature on matrix-based forecast reconciliation methods [Hyndman and
Athanasopoulos, 2021, Hyndman et al., 2011, Panagiotelis et al., 2021, Athanasopoulos et al., 2017]
as well as a commercial, single-process implementation in Python and Numpy [Olivares et al., 2022],
which uses BLAS/LAPACK under the hood. Our implementation, however, will be in C++, so we will
likely start from scratch and reason through our parallelization strategies with less help. To prepare
test-data for benchmark, we will be downloading data from cited sources [Kaggle, b,a, Cua et al.,
2010] and using Python to train basic forecasting models like Prophet [Taylor and Letham, 2018].
We will be implementing the serialization/deserialization of data from Python to C++ from scratch
with inspirations from common protocols like protobuf [Varda]. We hope to connect our system to
Python via pybind11, and there any many online resources on how to do that. For message-passing
libraries, we will be referring to common implementations of MPI to seek inspirations. For platforms,
we will use the GHC and PSC RM machines to test various single-node and multi-node workloads.
It would be beneficial to eventually work on a multi-node CPU system with remote direct memory
access (RDMA) enabled to test the efficacy of our system under new environments.
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5 Goals and Deliverable

We are going implement a system that supports multiple matrix-based forecast reconciliation methods
(top-down, bottom-up, middle-out, OLS and WLS) on Intel CPU platforms with LAPACK, OpenMP
and MPI. We plan to present an in-depth performance study on memory footprint, communication
overhead, and overall speedup on single-node, multi-core and multi-node settings (1-128 processes)
with benchmark datasets like Wikipedia, SUMO and Retail Goods (M5). We will also present a demo
showing how a data scientist could effectively leverage this system to perform time-series forecast
reconciliation.

5.1 Plan to Achieve

[75%] represents deliverables if things go slowly, and [100%] represents the full scope.

75% A modular framework that is easy to install and useful to a data scientist in performing
large-scale forecast reconciliation.

75% Naive single-process, matrix-based solution for all 5 methods. Latency is recorded as
gathering individual forecasts from all processes.

75% Naive MPI-based solution for all 5 methods (top-down, bottom-up, middle-out, OLS and
WLS). Expect to achieve at 4x less memory footprint and 5x less communication overhead
over naive single-process solution.

100% MPI + OpenMP + LAPACK solution for all 5 methods (top-down, bottom-up, middle-out,
OLS and WLS). Expect to achieve a further 20% to 80% speedup.

100% Communication reduction techniques for top-down, bottom-up and middle-out approaches.
Expect to achieve at least 5x speedup over matrix-based solution.

75% A simple benchmark system for single-node and multi-node CPU reconciliation performance
evaluation: memory, communication, latency and error metrics (SMAPE + MAPE).

75% Data loader for time-series forecasts and sample program for producing forecasts for the
benchmark datasets. Data loader simluates loading serialized forecasts into each process.

75% Performance study mentioned above.

5.1.1 Demo (Plan)

100% A Jupyter notebook producing Prophet forecasts for Wikipedia dataset and serializing them
into per-process files.

100% An example program leveraging our system to simulate loading per-process forecasts and
perform reconciliation, and calculates performance.

5.2 Hope to Achieve

125% Local OLS and WLS reconciliation method, with discussion on impact in error metric (e.g.
SMAPE and MAPE of new approach vs old, as well as increase in performance).

125% Global communication reduction techniques for OLS and WLS reconciliation methods.
Expect to achieve at least 2x speedup over matrix-based solution.

125% Connecting the system to Python via pybind11 and mpi4py, so that the per-process forecasts
could be readily reconciled as soon as it is produced from another library in memory.

5.2.1 Demo (Hope)

125% A Python program launched through mpi4py that trains Prophet model on individual time-
series in the Wikipedia.

125% Within the same program, calls the Python binding to our system to reconcile forecasts

125% Compute and report error metrics
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5.3 Hoping to Learn

• What is the memory impact of existing matrix-based approaches, and how can we open up a
tradeoff space between parallelism, performance, communciation and memory consumption
with MPI?

• How to still effectively leverage LAPACK + OpenMP within MPI?
• How do we maintain workload balance per process with respect to the graph hierarchy. If a

static assignment is used, how to compute it efficiently?
• Will local (in-process) OLS and WLS reconciliation method make a huge impact on perfor-

mance?

6 Platform Choice

We have chosen to implement our system in C++ on CPU systems in single-node and multi-node
settings. The rationale behind C++ is mainly from the performance of the programming language
and easy access of relevant parallelization libraries such as LAPACK (for linear algebra), OpenMP
(for shared-memory parallelism) and MPI (for message-passing parallelism). We chose CPU systems
over GPU due to the increase flexibility in memory (ease of working with MPI over NCCL) and
parallelism (ease of working with OpenMP + LAPACK over CUDA + CUBLAS). Most forecasting
algorithms (ARIMA, Prophet, exponential smoothing, etc.) run on CPU platforms, and our approach
here will likely be harder to parallelize on a multi-GPU platform. Moreover, not many multi-node
GPU platforms that will be available to us have high-bandwidth interconnection networks, and our
solution may suffer under that setting. The CPU-based solution, on the other hand, may have less
requirements on such bandwidth.

7 Schedule

11/09 - 11/15 Create the skeleton of project and prepare data loader with sample program. Implement all
5 naive matrix-based solution.

11/16 - 11/23 Set up benchmark system for performance comparison against Nixtla’s implementation, and
implement naive MPI-based solution. Start measuring metrics and begin performance study.

11/24 - 11/30 Implement MPI + OpenMP + LAPACK solution for all 5 methods and communication
reduction techniques for top-down, bottom-up and middle-out. Improve performance study
and complete the Milestone Report.

12/01 - 12/07 Implement local OLS and WLS reconciliation method and wrap up the performance study;
begin working on demo (plan) and Final Report.

12/08 - 12/17 Enable Python binding and improve demo with end-to-end capability outlined in demo
(hope). Implement global OLS and WLS communication techniques, and add to performance
study. Complete the Final Report.
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